CIRCUITPY Volume not visible for an Adafruit Circuit Playground Express on Windows 10 1803

I’ve just returned from the US and whilst there I picked myself up an Adafruit Circuit Playground Express. I plugged it into my computer and by all reports it should just appear as a removable drive on Windows 10. Alas that didn’t happen for me. I could get it into BOOT mode by pressing the Reset switch, but no matter what I did I couldn’t get the expected CIRCUITPY volume to be visible in File Explorer. Here’s how I got it working along with configuring VSCode as the editor.

Prerequisites

  • Visual Studio Code
    • Python Extension (from Microsoft) for VSCode. Install through VSCode Extensions

Environment Configuration

    1. Install the Arduino IDE from the Microsoft Store
    2. Open VSCode and install the Arduino Extension (from Microsoft)
      • go to the Command Palette and open Preferences: Open User Settings
      • under Arduino: Pathadd the path to Arduino. It should be something like C:\Program Files\WindowsApps\ArduinoLLC.ArduinoIDE_1.8.21.0_x86__mdqgnx93n4wtt depending on the version you have
      • under Arduino: Additional Urlsselect edit in settings.json and add the following line and save the file
        • “https://adafruit.github.io/arduino-board-index/package_adafruit_index.json
      • Open the Command Palette and select Arduino Board Config. Select Adafruit Circuit Playground
    3. Verify that the Adafruit Circuit Playground board is showing in the VSCode system tray along with the COM port is using on your computer.
    4. Update the Bootloader
      • Currently the latest bootloader is available from here https://github.com/adafruit/uf2-samdx1/releases/latest
        • for Circuit Playground Express you are looking for the update-bootloader-circuitplay_m0-v2.0.0-adafruit.VERSION.uf2 file
      • Click the reset button (in the middle of the board) and you should see the CPLAYBOOT drive volume in your computer File Explorer
      • Drop the bootloader uf2 file onto the drive
    5. Update to the latest Circuit Python Release
      • That is available from here https://circuitpython.org/board/circuitplayground_express/
        • Currently that is v3.1.2
      • Drop the updated Circuit Python .u2f file onto the CPLAYBOOT volume
    6. Restore the Demo Python Script
      • The demo is available from here https://github.com/adafruit/Adafruit_Learning_System_Guides/raw/master/Introducing_CircuitPlaygroundExpress/CPXDemoContent.zip
      • Unzip the download and drop the demo script (main.py and *.wav files)  onto the CIRCUITPY volume
      • It will restart and go through the neopixel demo (with startup sound)
    7. Using VSCode open the main.py file from the CIRCUITPY volume
      • update the following line from False to True and save the file
        • TOUCH_PIANO =True

         

With that all done I was up and running.

Hopefully that helps someone else get quickly starting and avoid all the troubleshooting I went through to get up and running.

A Voice Assistant for Microsoft Identity Manager

This is the third and final post in my series around using your voice to query/search Microsoft Identity Manager or as I’m now calling it, the Voice Assistant for Microsoft Identity Manager.

The two previous posts in this series detail some of my steps and processes in developing and fleshing out this Voice Assistant for Microsoft Identity Manager concept. The first post detailed the majority of the base functionality whilst the second post detailed the auditing and reporting aspects into Table Storage and Power BI.

My final architecture is depicted below.

Identity Manager integration with Cognitive Services and IoT Hub 4x3
Voice Assistant for Microsoft Identity Manager Architecture

I’ve put together more of an overview in a presentation format embedded here.

GitPitch Presents: github/darrenjrobinson/MIM-VoiceAssistant/presentation

The Fastest Way from Idea to Presentation for everyone on GitHub, GitLab, and Bitbucket.

If you’re interested in building the solution checkout the Github Repo here which includes the Respeaker Python Script, Azure Function etc.

Let me know how you go @darrenjrobinson

Using your Voice to Search Microsoft Identity Manager – Part 2

Introduction

Last month I wrote this post that detailed using your voice to search/query Microsoft Identity Manager. That post demonstrated a working solution (GitHub repository coming next month) but was still incomplete if it was to be used in production within an Enterprise. I hinted then that there were additional enhancements I was looking to make. One is an Auditing/Reporting aspect and that is what I cover in this post.

Overview

The one element of the solution that has visibility of each search scenario is the IoT Device. As a potential future enhancement this could also be a Bot. For each request I wanted to log/audit;

  • Device the query was initiated from (it is possible to have many IoT devices; physical or bot leveraging this function)
  • The query
  • The response
  • Date and Time of the event
  • User the query targeted

To achieve this my solution is to;

  • On my IoT Device the query, target user and date/time is held during the query event
  • At the completion of the query the response along with the earlier information is sent to the IoT Hub using the IoT Hub REST API
  • The event is consumed from the IoT Hub by an Azure Event Hub
  • The message containing the information is processed by Stream Analytics and put into Azure Table Storage and Power BI.

Azure Table Storage provides the logging/auditing trail of what requests have been made and the responses.  Power BI provides the reporting aspect. These two services provide visibility into what requests have been made, against who, when etc. The graphic below shows this in the bottom portion of the image.

Auditing Reporting Searching MIM with Speech.png
Voice Search for Microsoft Identity Manager Auditing and Reporting

Sending IoT Device Events to IoT Hub

I covered this piece in a previous post here in PowerShell. I converted it from PowerShell to Python to run on my device. In PowerShell though for initial end-to-end testing when developing the solution the body of the message being sent and sending it looks like this;

[string]$datetime = get-date
$datetime = $datetime.Replace("/","-")
$body = @{
 deviceId = $deviceID
 messageId = $datetime
 messageString = "$($deviceID)-to-Cloud-$($datetime)"
 MIMQuery = "Does the user Jerry Seinfeld have an Active Directory Account"
 MIMResponse = "Yes. Their LoginID is jerry.seinfeld"
 User = "Jerry Seinfeld"
}

$body = $body | ConvertTo-Json
Invoke-RestMethod -Uri $iotHubRestURI -Headers $Headers -Method Post -Body $body

Event Hub and IoT Hub Configuration

First I created an Event Hub. Then on my IoT Hub I added an Event Subscription and pointed it to my Event Hub.

IoTHub Event Hub.PNG
Azure IoT Hub Events

Streaming Analytics

I then created a Stream Analytics Job. I configured two Inputs. One each from my IoT Hub and from my Event Hub.

Stream Analytics Inputs.PNG
Azure Stream Analytics Inputs

I then created two Outputs. One for Table Storage for which I used an existing Storage Group for my solution, and the other for Power BI using an existing Workspace but creating a new Dataset. For the Table storage I specified deviceId for Partition key and messageId for Row key.

Stream Analytics Outputs.PNG
Azure Stream Analytics Outputs

Finally as I’m keeping all the data simple in what I’m sending, my query is basically copying from the Inputs to the Outputs. One is to get the events to Table Storage and the other to get it to Power BI. Therefore the query looks like this.

Stream Analytics Query.PNG
Azure Stream Analytics Query

Events in Table Storage

After sending through some events I could see rows being added to Table Storage. When I added an additional column to the data the schema-less Table Storage obliged and dynamically added another column to the table.

Table Storage.PNG
Table Storage Events

A full record looks like this.

Full Record.PNG
Voice Search Table Storage Audit Record

Events in Power BI

Just like in Table Storage, in Power BI I could see the dataset and the table with the event data. I could create a report with some nice visuals just as you would with any other dataset. When I added an additional field to the event being sent from the IoT Device it magically showed up in the Power BI Dataset Table.

PowerBI.PNG
PowerBI Voice Search Analytics

Summary

Using the Azure IoT Hub REST API I can easily send information from my IoT Device and then have it processed through Stream Analytics into Table Storage and Power BI. Instant auditing and reporting functionality.

Let me know what you think on twitter @darrenjrobinson

Using your Voice to Search Microsoft Identity Manager – Part 1

Introduction

Yes, you’ve read the title correctly. Speaking to Microsoft Identity Manager. The concept behind this was born off the back of some other work I was doing with Microsoft Cognitive Services. I figured it shouldn’t be that difficult if I just break down the concept into individual elements of functionality and put together a proof of concept to validate the idea. That’s what I did and this is the first post of the solution as an overview.

Here’s a quick demo.

Overview

The diagram below details the basis of the solution. There are a few extra elements I’m still working on that I’ll cover in a future post if there is any interest in this.

Searching MIM with Speech Overview

The solution works like this;

  1. You speak to a microphone connected to a single board computer with the query for Microsoft Identity Manager
  2. The spoken phrase is converted to text using Cognitive Speech to Text (Bing Speech API)
  3. The text phrase is;
    1. sent to Cognitive Services Language Understanding Intelligent Service (LUIS) to identify the target of the query (firstname lastname) and the query entity (e.g. Mailbox)
    2. Microsoft Identity Manager is queried via API Management and the Lithnet REST API for the MIM Service
  4. The result is returned to the single board computer as a text result phase which it then uses Cognitive Services Text to Speech to convert the response to audio
  5. The result is spoken back

Key Functional Elements

  • The microphone array I’m using is a ReSpeaker Core v1 with a ReSpeaker Mic Array
  • All credentials are stored in an Azure Key Vault
  • An Azure Function App (PowerShell) interfaces with the majority of the Cognitive Services being used
  • Azure API Management is used to front end the Lithnet MIM Webservice
  • The Lithnet REST API for the MIM Service provides easy integration with the MIM Service

Summary

Leveraging a lot of Serverless (PaaS) Services, a bunch of scripting (Python on the ReSpeaker and PowerShell in the Azure Function) and the Lithnet REST API it was pretty simple to integrate the ReSpeaker with Microsoft Identity Manager. An alternative to MIM could be any other service you have an API interface into. MIM is obviously a great choice as it can aggregate from many other applications/services.

Why a female voice? From a small response it was the popular majority.

Let me know what you think on twitter @darrenjrobinson

Sending Events from IoT Devices to Azure IoT Hub using HTTPS and REST

Overview

Different IoT Devices have different capabilities. Whether it is a Micro-controller or Single Board Computer your options will vary. In this post I detailed using MQTT to send messages from an IoT Device to an Azure IoT Hub as well as using the AzureIoT PowerShell Module.

For a current project I needed to send the events from an IoT Device that runs Linux and had Python support. The Azure IoT Hub includes an HTTPS REST endpoint. For this particular application using the HTTPS REST endpoint is going to be much easier than compiling the Azure SDK for the particular flavour of Linux running on my device.

Python isn’t my language of choice so first I got it working in PowerShell then converted it to Python. I detail both scripts here as a guide for anyone else trying to do something similar but also for myself as I know I’m going to need these snippets in the future.

Prerequisites

You’ll need to have configured an;

Follow this post to get started.

PowerShell Device to Cloud Events using HTTPS and REST Script

Here is the PowerShell version of the script. Update Line 3 for your DeviceID, Line 5 for your IoT Hub Name and LIne 11 for your SAS Token.

Using Device Explorer to Monitor the Device on the associated IoT Hub I can see that the message is received.

Device Explorer

Python Device to Cloud Events using HTTPS and REST Script

Here is my Python version of the same script. Again update Line 5 for your IoT DeviceID, Line 7 for your IoT Hub and Line 12 for the SAS Token.

And in Device Explorer we can see the message is received.

Device Explorer Python

Summary

When you have a device that has the ability to run Python you can use the IoT Hub HTTPS REST API to send messages from the Client to Cloud negating the need to build and compile the Azure IoT SDK to generate client libraries.