Resolving Microsoft Identity Manager “sync-rule-validation-parsing-error” error

A couple of weeks back I inherited a Microsoft Identity Manager development environment that wasn’t quite complete. When I performed a sync on a user object I got the following error;  sync-rule-validation-parsing-error

Looking into the error for further details, Details and Stack Trace were both greyed out as shown below.

I looked at the object being exported on the MA and the awaiting export details and found slightly different information. The error was CS to MV to CS synchronization failed 0x8023055a 

Still not a lot to go on. So I looked in the Application Event Log and nothing. Anything in the System Event Log? No, nothing.

So my attention turned to the Export Synchronization Rule. Here is a partial screenshot of the Export Sync Rule. The object (user) in question had been flagged as inactive and the intent appeared to be a clearing of a number of attributes. Sending “” (crude empty/null) to an attribute isn’t very elegant.

I changed each to use the null function. So for export, null() will flow to each of the attributes. I tried the export again and the same error and problem resulted.

Running short on ideas I created a brand new Export Synchronization Rule and replicated the configuration except for the attributes being exported. Then I added one attribute into the rule at a time, tested the export and repeated until I could replicate the error.

I was able to replicate the error once I hit the terminalServer attribute.
*Note: the screenshot below is prior to changing over to flow null() instead of “”.

Sending null() to the terminalServer Active Directory attribute was causing the error. It was at this point I actually just removed that flow rule and continued with other tasks.

Coming back to this later, and thinking it through I understand the error. When dealing with Terminal Services you actually normally manage four attributes that are part of the userParameters attribute. The four attributes that define a users Terminal Services Profile are;

  • allowLogon
  • terminalServicesHomeDirectory
  • terminalServicesProfilePath
  • terminalServicesHomeDrive

For a user that has a fully configured set of Terminal Services attributes, sending null() to the terminalServer attribute isn’t going to work.

So, posting this as I couldn’t find any reference to sync-rule-validation-parsing-error or CS to MV to CS synchronization failed 0x8023055a elsewhere and chances are I’ll come across it again, and it’ll probably help someone else too.

An Identity Consultants Summary of the recent Cloud Identity Summit 2017

I’ve just returned from Chicago and the Cloud Identity Summit that was held at the Sheraton Grand Chicago. It was my first CIS conference and reminded me a lot of the now defunct Quest Experts Conference and The Burton Group Conference, both in terms of the content and scale. It definitely had a more intimate feel than the massive Microsoft Ignite category of event which attracts 25k+ attendees. 1400 attendees at CIS was a record for this event, but it still meant you got the 1:1 time with vendors and speakers which is fantastic.

Just like the Quest “The Experts Conference” (TEC) and The Burton Group Conference if you pick your sessions based on the synopsis and the speaker the sessions can be highly technical 400+ level and worthy of the 30 hr journey to get to the conference. I focused on my particular subject of Identity, so this summary is biased towards that track.

A summary of my takeaways that I’ll briefly detail in the post are:

  • ID Pro
  • Strong Authentication / Goodbye Passwords
  • PAM and IGA
  • SCIM 2.0
  • FIDO 2.0

And before I forget, CIS is dead; long live CIS, now known as Identiverse which will be in Boston in June (24-27) 2018. Ping Identity have renamed the conference moving forward.

ID Pro

Ian Glazer in his keynote on Tuesday announced what has been missing from the IDAM Community. A professional organisation to represent it. Named ID Pro with all the details available here, it is professional organisation for IDAM exponents. Join now here for US$150. Supported by the Kantara initiative this organisation already has the support and backing of the industry.

Strong Authentication / Goodbye Passwords

There were numerous sessions around this topic. And it was fantastic to see that the eco-system to support the holy grail future of No Passwords, but Strong Authentication is now present. Alex Simons summed it up nicely in his keynote on Wednesday but setting the goal of 1 Billion Logins (without passwords) by 2018 launching the hashtag to go with it #1Billionby2018 Checkout the FIDO 2.0 summary further below.

Privileged Account Management and Identity Governance & Access

Privileged Account Management and Identity Governance & Access are better together. We knew this anyway and I’ve been approaching it this way with my solutions. It was therefore refreshing to be entertained by Kelly Grizzle in his session When meets through their mutual friend . In essence SailPoint have been working heavily on their IGA offering but with the help of SCIM now at 2.0 they’ve been working with PAM vendors such as CyberArk to provide the integration and visibility the two need. Kelly entertaining and informative presentation can be found here.

SCIM 2.0

Mentioned above in the PAM and IGA summary, SCIM 2.0 is now ready for prime time. Whilst SCIM has been around for some time it hasn’t seen widespread adoption in my circles. But that’s about to change. Microsoft have been using it as a primary integration method with Azure AD with the likes of Facebook for Work. Microsoft also have a SCIM MA for Microsoft Identity Manager. I’ll be experimenting with it in the near future.

FIDO 2.0

FIDO first came on to my radar about 4 years ago. It is in a lot of the workflows we do every day (if you have a modern operation system – Windows 8+ and bio-metrics on your device or a FIDO compliant token). With FIDO 2.0  and U2F v1.1 and UAF v1.1 now complete the foundation and enabling services for Strong Authentication are ready to go.

Summary of the Summary

I’ve tried hard to not make this too wordy, but the takeaway is this. Identity is the foundation of who you are and what you do. With all the other disruption in the IT industry around cloud and mobility, identity is always the enabler. Get it right and you can make life easier for your users, more visible for your information security officers and auditable for your compliance requirements. Just keep up, as it’s moving very fast.

Integration of Microsoft Identity Manager with Azure Platform-as-a-Service Services


This isn’t an out of the box solution. This is a bespoke solution that takes a number of elements and puts them together in a unique way. I’m not expecting anyone to implement this specific solution (but you’re more than welcome to) but to take inspiration from it to implement solutions relevant to your environment(s). This post supports a presentation I did to The MIM Team User Group on 14 June 2017.

This post describes a solution that;

  • Leverages an Azure WebApp (NodeJS) to present a simple website. That site can be integrated easily in the FIM/MIM Portal
  • The NodeJS website leverages an Azure Function App to get a list of users from the FIM/MIM Synchronization Server and allows the user to use typeahead functionality to find the user they want to generate a FIM/MIM object report on
  • On selection of a user, a request will be sent to another Azure Function App to generate and return the report to the user in a new browser window

This is shown graphically below.


Report Request UI

The NodeJS WebApp is integrated into the FIM/MIM portal. Bootstrap Typeahead is used to find the user to generate a report on. The Typeahead userlist if fulfilled by an Azure Function into the MIM Sync Metaverse. The Generate Report button fires off a call to FIM/MIM via another Azure Function into the MIM Sync and MIM Service to generate the report.

The returned report opens in a new tab in the users browser. The report contains details of the FIM/MIM connectors the user is represented on.

The values of all attributes for the users hologram from the Metaverse are displayed along with the MA the value came from and the last modified date.

Finally the metadata report from the MIM Service MA Connector Space and the MIM Service.


These are numerous, but I’ve previously posted about them. You will need;

I encourage you to digest those posts to understand how to configure the prerequisites for this solution.

Additional Solution Requirements

To bring all the individual components together, there are a few additional tasks to enable this solution.

  • Enable CORS on your Azure Function App Configuration (see details further below)
  • If you want to display User Object Photos as part of the report, you will likely need to synchronize them into FIM/MIM from an authoritative source (e.g. Office365/Exchange Online)   Checkout this post  and additional details further below
  • In order to embed the NodeJS WebApp into the FIM/MIM Portal, this post provides the details. Change the target URL from PowerBI URL to your NodeJS site
  • Object Report Request WebApp (see below for sample site)

Azure Functions Cross Origin Resource Sharing (CORS)

You will need to configure CORS to allow the NodeJS WebApp to access the Azure Functions (from both local and Azure). Reflect your port number if it is different from 3000, and use the DNS name for your Azure WebApp.

Sample UI NodeJS HTML

Here is a sample HTML file for your NodeJS WebApp with the UI to provide Input for LoginID fulfilled by the NodeJS Javascript file further below.

Sample UI NodeJS JavaScript

The following NodeJS JavaScript supports the HTML UI above. It populates the LoginID typeahead box and takes the Submit Report button to fulfill the report for the desired object(s). Yes if you use the UI to select (individually) multiple different objects all will be returned in their separate output windows.

As the HTML file above indicates you will need to obtain and make available as part of your NodeJS project the typeahead.bundle.js library.

Azure PowerShell Trigger Function App for AccountNames Lookup

The following Azure Function takes the call from the load of the NodeJS WebApp to populate the typeahead userlist.

Azure PowerShell Trigger Function App for User Object Report

Similar in structure to the Username List Lookup Azure Function above, but in the ScriptBlock you embed the Report Generation Script that is detailed here. Modify for what you want to report on.

Photos in the Report

If you want to display images in your report, you will need to determine if the user has an image during the MV metadata report generation part of the script. Add the following lines (updating for the name of your Image attribute; mine is named EXOPhoto) after the Try {} Catch {} in this section $obj = @() ; foreach ($attr in $attributes.Keys)

 # Display the Objects Photo rather than Base64 string
 if ($attr.equals("EXOPhoto")){
     $objectphoto = "<img src=$([char]0x22)data:image/jpeg;base64,$($attributes.$attr.Values.Valuestring)$([char]0x22)>"
     $val = "System.Byte[]"

Then in the output of the HTML report at the end of the report generation insert the $objectphoto variable into the HTML stream.

# Output MIM Service Object Data
 $MIMServiceObjOut = $MIMServiceObjectMetaData | Sort-Object -Property Attribute | ConvertTo-Html -Fragment
 $htmlreport = ConvertTo-HTML -Body "$htmlcss<h1>Microsoft Identity Manager User Object Report</h1><h2>Query</h2>$sourcequery</br><b><center>$objectphoto</br>NOTE: Only attributes with values are displayed.</center></b><h2>Connector(s) Summary</h2>$connectorsummary<h2>MetaVerse Data</h2>$objectmetadata <h2>MIM Service CS Object Data</h2>$MIMServiceCSobjectmetadata <h2>MIM Service Object Data</h2>$MIMServiceObjOut" -Title "MIM Object Report"

As you can see above I’ve also injected the CSS ($htmlcss) into the output stream at the beginning of the Body section.  Somewhere in your script block you will need to define your CSS values. e.g.

 # StyleSheet for nice pretty output
 $htmlcss = "<style>
    h1, h2, th { text-align: center; }
    table { margin: auto; font-family: Segoe UI; box-shadow: 10px 10px 5px #888; border: thin ridge grey; }
    th { background: #0046c3; color: #fff; max-width: 400px; padding: 5px 10px; }
    td { font-size: 11px; padding: 5px 20px; color: #000; }
    tr { background: #b8d1f3; }
    tr:nth-child(even) { background: #dae5f4; }
    tr:nth-child(odd) { background: #b8d1f3; }


An interesting solution integrating Azure PaaS Services with Microsoft Identity Manager via PowerShell and the extremely versatile Lithnet FIM/MIM PowerShell Modules.

Please share your implementations enhancing your FIM/MIM Solution.

How to access Microsoft Identity Manager Hybrid Report data using PowerShell, Graph API and oAuth2

Hybrid Reporting is a great little feature of Microsoft Identity Manager. A small agent installed on the MIM Sync Server will send reporting data to Azure for MIM SSPR and MIM Group activities. See how to install and configure it here.

But what if you want to get the reporting data without going to the Azure Portal and looking at the Audit Reports ? Enter the Azure AD Reports and Events REST API that is currently in preview.  It took me a couple of cracks and getting this working, because documentation is a little vague especially when accessing it via PowerShell and oAuth2. So I’ve written it up and hope it helps for anyone else looking to go down this route.


Accessing the Reports via the API has a couple of caveats that I had to work through:

  • Having the correct permissions to access the report data. Pretty much everything you read tells you that you need to be a Global Admin. Once I had my oAuth tokens I messed around a little and a was able to also get the following from back from the API when purposely using an identity that didn’t have the right permissions. The key piece is “Api request is not from global admin or security admin or security reader role”. I authorized the WebApp using an account that is in the Security Reader Role, and can successfully access the report data.

  • Reading the documentation here on MSDN I incorrectly assumed each category was the report name. Only when I called the “$metadata?api-version=beta”  and looked at the list of reports I noticed each report was plural.The three that I wanted to access (and report on) are obviously the MIM Hybrid Reports;
"Name":  "mimSsgmGroupActivityEvents",
"Name":  "mimSsprActivityEvents",
"Name":  "mimSsprRegistrationActivityEvents",

Here is the full list of Reports available as of 24 May 2017.

    "Name":  "b2cAuthenticationCountSummary",
    "LicenseRequired":  "False"
    "Name":  "b2cMfaRequestCount",
    "LicenseRequired":  "False"
    "Name":  "b2cMfaRequestEvent",
    "LicenseRequired":  "False"
    "Name":  "b2cAuthenticationEvent",
    "LicenseRequired":  "False"
    "Name":  "b2cAuthenticationCount",
    "LicenseRequired":  "False"
    "Name":  "b2cMfaRequestCountSummary",
    "LicenseRequired":  "False"
    "Name":  "tenantUserCount",
    "LicenseRequired":  "False"
    "Name":  "applicationUsageDetailEvents",
    "LicenseRequired":  "False"
    "Name":  "applicationUsageSummaryEvents",
    "LicenseRequired":  "True"
    "Name":  "b2cUserJourneySummaryEvents",
    "LicenseRequired":  "False"
    "Name":  "b2cUserJourneyEvents",
    "LicenseRequired":  "False"
    "Name":  "cloudAppDiscoveryEvents",
    "LicenseRequired":  "False"
    "Name":  "mimSsgmGroupActivityEvents",
    "LicenseRequired":  "True"
    "Name":  "ssgmGroupActivityEvents",
    "LicenseRequired":  "True"
    "Name":  "mimSsprActivityEvents",
    "LicenseRequired":  "True"
    "Name":  "ssprActivityEvents",
    "LicenseRequired":  "True"
    "Name":  "mimSsprRegistrationActivityEvents",
    "LicenseRequired":  "True"
    "Name":  "ssprRegistrationActivityEvents",
    "LicenseRequired":  "True"
    "Name":  "threatenedCredentials",
    "LicenseRequired":  "False"
    "Name":  "compromisedCredentials",
    "LicenseRequired":  "False"
    "Name":  "auditEvents",
    "LicenseRequired":  "False"
    "Name":  "accountProvisioningEvents",
    "LicenseRequired":  "False"
    "Name":  "signInsFromUnknownSourcesEvents",
    "LicenseRequired":  "False"
    "Name":  "signInsFromIPAddressesWithSuspiciousActivityEvents",
    "LicenseRequired":  "True"
    "Name":  "signInsFromMultipleGeographiesEvents",
    "LicenseRequired":  "False"
    "Name":  "signInsFromPossiblyInfectedDevicesEvents",
    "LicenseRequired":  "True"
    "Name":  "irregularSignInActivityEvents",
    "LicenseRequired":  "True"
    "Name":  "allUsersWithAnomalousSignInActivityEvents",
    "LicenseRequired":  "True"
    "Name":  "signInsAfterMultipleFailuresEvents",
    "LicenseRequired":  "False"
    "Name":  "applicationUsageSummary",
    "LicenseRequired":  "True"
    "Name":  "userActivitySummary",
    "LicenseRequired":  "False"
    "Name":  "groupActivitySummary",
    "LicenseRequired":  "True"

How to Access the Reporting API using PowerShell

What you need to do is;

  • Register a WebApp
    • Assign a reply to URL of https://localhost
    • Assign it Read.Directory permissions
  • Get an oAuth2 Authentication Code using an account that is either Global Admin or in the Security Admin or Security Reader Azure Roles
  • Use your Bearer and Refresh tokens to query for the reports you’re interested in

Register your WebApp

In the Azure Portal create a new Web app/API app and assign it https://localhost as the Reply URL. Record the Application ID for use in the PowerShell script.

Assign the Read Directory data permission as shown below

Obtain a key from the Keys option on your new Web App.  Record it for use in the PowerShell script.

Generate an Authentication Code, get a Bearer and Refresh Token

Update the following script, changing Lines 5 & 6 for the ApplicationID/ClientId and Client Secret for the WebApp you created above.

Run the script and you will be prompted to authenticate. Use an account in the tenant where you created the Web App that is a Global Admin or in the Security Admin or Security Reader Azure Roles. You will need to change the location where you want the refresh.token stored (line 18).

If you’ve done everything correctly you have authenticated, got an AuthCode which was then used to get your Authorization Tokens. The value of the $Authorization variable should look similar to this;

Now you can use the Refresh token to generate new Authorization Tokens when they time out, simply by calling the Get-NewTokens function included in the script above.

Querying the Reporting API

Now that you have the necessary prerequisites sorted you can query the Reporting API.

Here are a couple of simple queries to return some data to get you started. Update the script for the tenant name of your AzureAD. With the $Authorization values from the script above you can get data for the MIM Hybrid Reports.

Synchronizing Exchange Online/Office 365 User Profile Photos with FIM/MIM


This is Part Two in the two-part blog post on managing users profile photos with Microsoft FIM/MIM. Part one here detailed managing users Azure AD/Active Directory profile photo. This post delves deeper into photos, specifically around Office 365 and the reason why you may want to manage these via FIM/MIM.


User profile photos should be simple to manage. But in a rapidly moving hybrid cloud world it can be a lot more complex than it needs to be. The best summary I’ve found of this evolving moving target is from Paul Ryan here.

Using Paul’s sound advice we too are advising our customers to let users manage their profile photo (within corporate guidelines) via Exchange Online. However as described in this article photos managed in OnPremise Active Directory are synchronized to Azure AD and on to other Office365 services only once. And of course we want them to be consistent across AD DS, Azure AD, Exchange Online and all other Office365 Services.

This post details synchronizing user profile photos from Exchange Online to MIM for further synchronization to other systems. The approach uses a combination of Azure GraphAPI and Exchange Remote PowerShell to manage Exchange Online User Profile Photos.

The following graphic depicts the what the end goal is;

Current State

  • Users historically had a photo in Active Directory. DirSync/ADSync/AzureADConnect then synchronized that to Azure AD (and once only into Office 365).
  • Users update their photo in Office365 (via Exchange Online and Outlook Web Access)
    • the photo is synchronized across Office365 Services

Desired State

  • An extension of the Current State is the requirement to be able to take the image uploaded by users in Exchange Online, and synchronize it back to the OnPremise AD, and any other relevant services that leverage a profile photo
  • Have AzureADConnect keep AzureAD consistent with the new photo obtained from Office365 that is synchronized to the OnPrem Active Directory
  • Sync the current photo to the MIM Portal

Synchronizing Office365 Profile Photos

Whilst Part-one dealt with the AzureAD side of profile photos as an extension to an existing AzureAD PowerShell Management Agent for FIM/MIM, I’ve separated out the Office365 side to streamline it and make it as efficient as possible. More on that later. As such I’ve created a new PowerShell Management Agent specifically for Office365 User Profile Photos.

I’m storing the Exchange Online photo in the MIM Metaverse as a binary object just as I did for the AzureAD photo (but in a different attribute ). I’m also storing a checksum of the photos (as I did for the AzureAD Photo, but also in a different attribute) to make it easier for comparing what is in Azure AD and Exchange Online, to then be used to determine if changes have been made (eg. user updated their profile photo).

Photo Checksum

For generating the hash of the profile photos I’m using Get-Hash from the Powershell Community Extensions.  Whilst PowerShell has Get-FileHash I don’t want to write the profile photos out to disk and read them back in just to get the checksum. That slows the process up by 25%. You can get the checksum using a number of different methods and algorithms. Just be consistent and use the same method across both profile photos and you’ll be comparing apples with apples and the comparison logic will work.

Some notes on Photos and Exchange Online (and MFA)

This is where things went off on a number of tangents. Initially I tried accessing the photos using Exchange Online Remote PowerShell.

CAVEAT 1: If your Office365 Tenant is enabled for Multi-Factor Authentication (which it should be) you will need to get the Exchange Online Remote PowerShell Module as detailed here. Chances are you won’t have full Office365 Admin access though, so as long as the account you will be using is in the Recipient Management Role you should be able to go to the Exchange Control Panel using a URL like<tenantname>&wa=wsignin1.0 where tenantname is something like From the Hybrid menu on in the right handside pane you will then be able to download the Microsoft.Online.CSE.PSModule.Client.application I had to use Internet Explorer to download the file and get it installed successfully. Once installed I used a few lines from this script here to load the Function and start my RPS session from within PowerShell ISE during solution development.

CAVEAT 2: The EXO RPS MFA PS Function doesn’t allow you to pass it your account password. You can pass it the identity you want to use, but not the password. That makes scheduled process automation with it impossible.

CAVEAT 3: The RPS session exposes the Get-UserPhoto cmdlet which is great. But the RPS session leverages the GraphAPI. The RPS PS Module doesn’t refresh it’s tokens, so if the import takes longer than 60 minutes then using this method you’re a bit stuffed.

CAVEAT 4: Using the Get-UserPhoto cmdlet detailed above, the syncing of photos is slow. As in I was only getting ~4 profile photos per minute slow. This also goes back to the token refresh issue as for pretty much any environment of the size I deal with, this is too slow and will timeout.

CAVEAT 5: You can whitelist the IP Address (or subnet) of your host so MFA is not required using Contextual IP Addressing Whitelisting. At that point there isn’t really a need to use the MFA Enabled PREVIEW EXO RPS function anyway. That said I still needed to whitelist my MIM Sync Server(s) from MFA to allow integration into the Graph API. I configured just the single host. The whitelist takes CIDR format so that looks like /32 (eg.

Performance Considerations

As I mentioned above,

  • using the Get-UserPhoto cmdlet was slow. ~4 per minute slow
  • using the GraphAPI into Exchange Online and looking at each user and determining if they had a photo then downloading it, was also slow. Slow because at this customer only ~50% of their users have a photo on their mailbox. As such I was only able to retrieve ~145 photos in 25 minutes. *Note: all timings listed above were during development and actually outputting the images to disk to verify functionality. 

Implemented Solution

After all my trial and error on this, here is my final approach and working solution;

  1. Use the Exchange Online Remote PowerShell (non-MFA version) to query and return a collection of all mailboxes with an image *Note, add an exception for your MIM Sync host to the white-listed hosts for MFA (if your Office365 Tenant is enabled for MFA) so the process can be automated
  2. Use the Graph API to obtain those photos
    • with this I was able to retrieve ~1100 profile photos in ~17* minutes (after ~2 minutes to query and get the list of mailboxes with a profile photo)


There’s a lot of info above, so let me summarize the pre-requisties;

  • The Granfeldt PowerShell MA
  • Whitelist your FIM/MIM Sync Server from MFA (if your Office 365 environment is enabled for MFA)
  • Add the account you will run the MA as, that will in turn connect to EXO via RPS to the Recipient Management Role
  • Create a WebApp for the PS MA to use to access users Profile Photos via the Graph API (fastest method)
  • Powershell Community Extensions to generate the image checksum

Creating the WebApp to access Office365 User Profile Photos

Go to your Azure Portal and select the Azure Active Directory Blade from the Resource Menu bar on the left. Then select App Registrations and from the Manage Section of the Azure Active Directory menu, and finally from the top of the main pane select “New Application Registration“.

Give it a name and select Web app/API as the type of app. Make the sign-in URL https://localhost and then select Create.

Record the ApplicationID that you see in the Registered App Essentials window. You’ll need this soon.

Now select All Settings => Required Permissions. Select Read all users basic profiles in addition to Sign in and read user profile. Select Save.

Under Required Permissions select Add and then select 1 Select an API, and select Office 365 Exchange Online then click Select.

Choose 2 Select Permissions and then select Read user profiles and Read all users’ basic profiles. Click Select.

Select Grant Permissions

From Settings select Keys, give your key a Description, choose a key lifetime and select Save. RECORD the key value. You’ll need this along with the WebApp ApplicationID/ClientID for the Import.ps1 script.

Using the information from your newly registered WebApp, we need to perform the first authentication (and authorization of the WebApp) to the Graph API. Taking your ApplicationID, Key (Client Secret) and the account you will use on on the Management Agent (and that you have assigned the Recipient Management Role in Exchange Online) and run the script detailed in this post here. It will authenticate you to your new WebApp via the GraphAPI after asking you to provide the account you will use on the MA and Authorizing the permissions you selected when registering the app. It will also create a refresh.token file which we will give to the MA to automate our connection. The Authorization dialog looks like this.

Creating the Management Agent

Now we can create our Management Agent using the Granfeldt PowerShell Management Agent. If you haven’t created one before checkout a post like this one, that further down the post shows the creation of a Granfeldt PSMA. Don’t forget to provide blank export.ps1 and password.ps1 files on the directory where you place the PSMA scripts.

PowerShell Management Agent Schema.ps1

PowerShell Management Agent Import.ps1

As detailed above the PSMA will leverage the WebApp to read users Exchange Profile Photos via the Graph API. The Import script also leverages Remote Powershell into Exchange Online (for reasons also detailed above). The account you run the Management Agent as will need to be added to the Recipient Management Role Group in order to use Remote PowerShell into Exchange Online and get the information required.

Take the Import.ps1 script below and update;

  • Update lines 11, 24 and 42 for the path to where you have put your PSMA. Mine is under the Extensions directory in a directory named EXOPhotos.
  • copy the refresh.token generated when authenticating and authorizing the WebApp earlier into the directory you specified in line 42 above.
  • Create a Debug directory under the directory you specified in lines 11,24 and 42 above so you can see what the MA is doing as you implement and debug it the first few times.
  • I’ve written the Import to use Paged Imports, so make sure you tick the Paged Imports checkbox on the configuration of the MA
  •  Update Lines 79 and 80 with your ApplicationID and Client Secret that you recorded when creating your WebApp


Running the Exchange User Profile Photos MA

Now that you have created the MA, you should have select the EXOUser ObjectClass and the attributes defined in the schema. You should also create the EXOPhoto (as Binary) and EXOPhotoChecksum (as String) attributes in the Metaverse on the person ObjectType (assuming you are using the built-in person ObjectType).

Configure your flow rules to flow the EXOPhoto and EXOPhotoChecksum on the MA to their respective attributes in the MV.

Create a Stage Only run profile and run it. If you have done everything correctly you will see photos come into the Connector Space.

Looking at the Connector Space, I can see EXOPhoto and EXOPhotoChecksum have been imported.

After performing a Synchronization to get the data from the Connector Space into the Metaverse it is time to test the image that lands in the Metaverse. That is quick and easy via PowerShell and the Lithnet MIIS Automation PowerShell Module.

$me = Get-MVObject -ObjectType person -Attribute accountName -Value "drobinson"
[System.Io.File]::WriteAllBytes("c:\temp\myOutlookphoto.jpg" ,$me.Attributes.EXOPhoto.Values.ValueBinary )

The file is output to the directory with the filename specified.

Opening the file reveals correctly my Profile Photo.


In Part one we got the AzureAD/Active Directory photo. In this post we got the Office365 photo.

Now that we have the images from Office365 we need to synchronize any update to photos to Active Directory (and in-turn via AADConnect to Azure AD). Keep in mind the image size limits for Active Directory and that we retrieved the largest photo available from Office365 when synchronizing the photo on. There are a number of PowerShell modules for photo manipulation that will allow you to resize accordingly.




How to Synchronize users Active Directory/Azure Active Directory Photo using Microsoft Identity Manager


Whilst Microsoft FIM/MIM can be used to do pretty much anything your requirements dictate, dealing with object types other than text and references can be a little tricky when manipulating them the first time. User Profile Photos fall into that category as they are stored in the directory as binary objects. Throw in Azure AD and obtaining and synchronizing photos can seem like adding a double back-flip to the scenario.

This post is Part 1 of a two-part post. Part two is here. This is essentially the introduction to the how-to piece before extending the solution past a users Active Directory Profile Photo to their Office 365 Profile Photo. Underneath the synchronization and method for dealing with the binary image data is the same, but the API’s and methods used are different when you are looking to implement the solution for any scale.

As for why you would want to do this, refer to Part two here. It details why you may want to do this.


As always I’m using my favourite PowerShell Management Agent (the Granfeldt PSMA). I’ve updated an existing Management Agent I had for Azure AD that is described here. I highly recommend you use that as the basis for the extra photo functionality that I describe in this post. Keep in mind the AzureADPreview, now AzureAD Powershell Module has change the ADAL Helper Libraries. I detail the changes here so you can get AuthN to work with the new libraries.

Therefore the changes to my previous Azure AD PowerShell MA are to add two additional attributes to the Schema script, and include the logic to import users profile photo (if they have one) in the Import script.


Take the schema.ps1 from my Azure AD PSMA here and add the following two lines to the bottom (before the $obj in the last line where I’ve left an empty line (29)).

$obj | Add-Member -Type NoteProperty -Name "AADPhoto|Binary" -Value 0x20 
$obj | Add-Member -Type NoteProperty -Name "AADPhotoChecksum|String" -Value "23973abc382373"

The AADPhoto attribute of type Binary is where we will store the photo. The AADPhotoChecksum attribute of type String is where we will store a checksum of the photo for use in logic if we need to determine if images have changed easily during imports.



Take the import.ps1 from my Azure AD PSMA here and make the following additions;

  • On your MIM Sync Server download/install the Pscx PowerShell Module.
    • The Pscx Powershell Module is required for Get-Hash (to calculate Image checksum) based on variables vs a file on the local disk
    • You can get the module from the Gallery using Install-Module Pscx -Force
    • Add these two lines up the top of the import.ps1 script. Around line 26 is a good spot
# Powershell Module required for Get-Hash (to calculate Image checksum)
Import-Module Pscx
  • Add the following lines into the Import.ps1 in the section where we are creating the object to pass to the MA. After the $obj.Add(“AADCity”,$ line is a good spot. 
  • What the script below does is create a WebClient rather than use Invoke-RestMethod or Invoke-WebRequest to get the users Azure AD Profile image only if the ‘thumbnailPhoto@odata.mediaContentType’ attribute exists which indicates the user has a profile photo. I’m using the WebClient over the PowerShell Invoke-RestMethod or Invoke-WebRequest functions so that the returned object is in binary format (rather than being returned as a string), which saves having to convert it to binary or output to a file and read it back in. The WebClient is also faster for transferring images/data.
  • Once the image has been returned (line 8 below) the image is added to the object as the attribute AADPhoto to be passed to the MA (line 11)
  • Line 14 gets the checksum for the image and adds that to the AADPhotoChecksum attribute in line 16.

Other changes

Now that you’ve updated the Schema and Import scripts, you will need to;

  • Refresh your schema on your Azure AD PSMA to get the new attributes (AADPhoto and AADPhotoChecksum) added
  • Select the two new attributes in the Attributes section of your Azure AD PSMA
  • Create in your MetaVerse via the MetaVerse Designer two new attributes on the person (or whatever ObjectType you are using for users), for AADPhoto and AADPhotoChecksum. Make sure that AADPhoto is of type Binary and AADPhotoChecksum is of type string.

  • Configure your Attribute Flow on your Azure AD PSMA to import the AADPhoto and AADPhotoChecksum attributes into the Metaverse. Once done and you’ve performed an Import and Sync you will have Azure AD Photos in your MV.

  • How do you know they are correct ? Let’s extract one from the MV, write it to a file and have a look at it. This small script using the Lithnet MIIS Automation PowerShell Module makes it easy. First I get my user object from the MV. I then have a look at the text string version of the image (to make sure it is there), then output the binary version to a file in the C:\Temp directory.
$me = Get-MVObject -ObjectType person -Attribute accountName -Value "drobinson"
[string]$myphoto = $me.Attributes.AADPhoto.Values.ValueString
[System.Io.File]::WriteAllBytes("c:\temp\UserPhoto.jpg" ,$me.Attributes.AADPhoto.Values.ValueBinary )
  • Sure enough. The image is valid.


Photos are still just bits of data. Once you know how to get them and manipulate them you can do what ever you need to with them. See Part two that takes this concept and extends it to Office 365.

Using the Lithnet PowerShell Modules to generate full object metadata FIM/MIM HTML Reports

How many times have you wanted a consolidated report out of FIM/MIM for an object? What connectors does it have, what are the values of the attributes, which Management Agent contributed the value(s) and when? Individually of course you can get that info using the Metaverse Search and looking at the object in MIM Portal. But what if you wanted it all with a single query? This blog post provides an approach to doing just that. The graphic above shows a screenshot of a sample output. Click this Sample Report for full resolution version of the screenshot above. Note: The updated version of the script below outputs DisplayName for the ExpectedRulesList attribute so it actually provides valuable information. 


The approach is quite simple. It is;

  • Query the FIM/MIM Metaverse for an object
  • Take the response from the Metaverse to build the Connectors and Metaverse Hologram reports
  • Use the connector information to query the MIM Service MA (this example assumes it is on the same server. If not add the following line into the script with the appropriate values) and get the objects MIM Service Connector Space info
    Set-ResourceManagementClient -BaseAddress http://fimsvc:5727;
  • Take information retrieved above to then query the MIM Service and return the information for the object.
  • Format all the output for HTML, apply a simple style sheet, output to file and display in the default browser

NOTE: If you combine this with the Get-MVObject query building script detailed here it can be a relatively simple solution. That script even uses the same variables $queries and $query as outputs from the search and input into the HTML Report.

NOTE: You could possibly run it remotely from the MIM Sync Server too, if you leverage Remote Powershell to your FIM/MIM Sync server as detailed here.

The Script

Here it is. Lines 23 and 24 contain a hard-coded query. Update for your search criteria, or as detailed above combine this with the Get-MVObject query building script detailed here .  The Output directory specified in Line 7 is where the stylesheet and the resultant HTML file will be placed. Update for your needs.

For the Expected Rules List (unlike the screenshot as I’ve modified the script afterwards), the script gets the DisplayName for them and puts that in the report. DisplayName is more valuable than an ERE ObjectID.

Scripting queries for Lithnet Get-MVObject searches into the Microsoft Identity Manager Metaverse

It probably seems obvious by now, but I seem to live in PowerShell and Microsoft Identity Manager. I’m forever looking into the Microsoft Identity Manager Metaverse for objects.

However, sometimes I get tripped up by the differences in Object Classes between the FIM/MIM Service and the Metaverse, the names of the Object Classes (obviously not Person, Group and Contact) and in situations where they are case-sensitive.  If you’re using the Sync Service Manager Metaverse Search function though you get a pick list. But getting the data out to do something else with isn’t an option.


I’ve looked to quickly provide a similar function to the pick lists in the Metaverse Search GUI via Powershell which then gets executed by the Get-MVObject PowerShell Module.

UPDATE: 17 May 2017 The Lithnet MIIS Automation PowerShell Module has been updated for Get-MVObject to support the ObjectType Scope. I’ve updated the script to include the scope parameter based on the ObjectClass selected at the beginning of the script. 

I’ve defaulted the ObjectClass to Person so you can just press enter. But if you have custom ObjectClasses in your Metaverse you may need to change the index number in Line 48 from 5 to whichever index Person appears in your environment. Same goes for the default attribute of AccountName in the Attribute list. It appears at index 5 (Line 77) in my attribute list.


Basically just run the PowerShell script and choose your options. The script needs interaction with the FIM/MIM Sync server, so you run it from the FIM/MIM Sync server. If you want to run it remotely (of course you do), then Remote PowerShell is your friend. Checkout how to do that to the FIM/MIM Server in this post here.

The Script itself will query the FIM/MIM MV Schema and return a list of Object Classes. As detailed above, in Line 48 of the script I have ‘index 5’ as the default which in my environment is Person and as such you can just hit enter if that is the Object Class you want to choose attributes from in the next step. Otherwise type the name of the ObjectClass you want. You don’t have to worry about case sensitivity as the script handles that. You can only choose a single ObjectClass obviously, but the menu ui I’ve used allows for multiple selections. Just press enter when prompted for another option for ObjectClass.

You’ll then be presented with a list of attributes from the chosen Object Class above. Again as detailed above I have it defaulting to ‘accountName’ which is index 5 in my list. Change (Line 77) for the default you want. This means you can just hit enter if accountName is what you’re querying on (which is common). Or choose another option. This then also allows you to also choose multiple attributes (which will be added to an array). This means you can use this for complex queries such as;

accountName startsWith 'dar'
sn startsWith 'rob'
mail contains '@kloud'

If you want to choose multiple attributes for your query and one of them is the default option, make sure you specify one of the attributes that is not the default first so that you get the option to specify more. When you’ve chosen all the attributes you are going to use in your query hit enter and the script will take an empty response as the end of your choices.

Now for each attribute chosen you will be prompted for an Operator. Pretty simple. Just choose from the available options. Note: all operators are shown but not all operators can be used for all attribute types. e.g. Don’t select ‘EndsWith’ for a Boolean attribute type and expect it to work. If you choose an operator other than the default (equals in my example) hit enter when prompted for the second time and the script will take an empty response as the end of your choices.

Finally provide what you the value is for the search term for the attribute. If the value has spaces, don’t worry about putting the value in quotes. The script takes care of that.

The last two steps will iterate through, for queries where you have chosen multiple attributes.

And you’re done. $query is the variable that contains the results. In line 115 I’m using Show-Object from the PowershellCookBook PSM. That then gives you a GUI representation of the result as shown below. If the query returns multiple results this will only show the last.

Line 114 outputs the value of the attributes ($query.attributes) to the console as well. If you have multiple objects returned $query will show them as shown below.

Finally if you want to run the query again, or just make a subtle change, you shouldn’t have to go through that again. Get the value of $querytxt and you’ll get the query and the command to execute it. $querytxt is also output to the console as shown below. Copy and paste it into Powershell ISE, update and execute.

The Script

Here is the raw script. Hardly any error handling etc, but enough to get you started and tailor it for your requirements. Enjoy.

Diagnosing FIM/MIM ‘kerberos-no-logon-server’ error on an Active Directory Management Agent


I have a complex customer environment where Microsoft Identity Manager is managing identities across three Active Directory Forests. The Forests all serve different purposes and are contained in different network zones. Accordingly there are firewalls between the zone where the MIM Sync Server is located and two of the other AD Forests as shown in the graphic below.

As part of the project the maintainers of the network infrastructure had implemented rules to allow the MIM Sync server to connect to the other two AD Forests. I had successfully been able to create the Active Directory Management Agents for each of the Forests and perform synchronization imports.

The Error ‘kerberos-no-logon-server’

Everything was going well right up to the point I went to export changes to the two AD Forests that were separated by firewalls. I received the ‘kerberos-no-logon-server’ error as shown below from the run profile output.

I started investigating the error as I hadn’t encountered this one before. There were a few posts on the possibilities mainly dealing with properties of the AD MA’s configuration. But I did stumble on a mention of kerberos being used when provisioning users to Active Directory and setting the initial password. That aligned with what I was doing. I had provided the networking engineers with my firewall port requirements. Those are (no PCNS required for this implementation) ;

  • 389 TCP – LDAP
  • 636 TCP – LDAPS
  • 88 TCP – Kerberos
  • 464 TCP/UDP – Kerberos
  • 53 TCP – DNS
  • 3268 TCP/UDP – Global Catalog
  • 3269 TCP/UDP – Global Catalog
  • 135 TCP – RPC

My old school immediate thought was to Telnet to each of the ports to see if the firewall was allowing me through. But with a couple of forests to test against and UDP ports as well, it wasn’t going to be that easy. I found a nice little Test-Port function that did both TCP and UDP. I already had an older script for testing TCP ports via PowerShell. So I combined them.

Identifying the cause

As suspected connectivity to the forest where my MIM Sync Server was located was all good. The other two, not so much. GC connectivity wouldn’t give me the Kerberos error, but not having Kerberos Port 464 certainly would.

In the backwards and forwards with the networking team I had to test connectivity many times so I added a running output as well as a summary output. The running output highlighting ports that weren’t accessible.

Here’s the raw script if you’re in a similar situation. Get the Test-Port Function from the URL in line 1 to test UDP Port connectivity. Add additional ports to the arrays if required (eg. for PCNS), and update the forest names in lines 21-23.


I’m sure this is going to become more relevant in a Cloud/Hybrid world where MIM Servers will be in Azure, Active Directory Forests will be in different networks and separated by firewalls and Network Security Groups.




An alternate method for dealing with Orphaned MetaVerse Objects

Update 21 April ’17. The LithnetMIISAutomation PS Module now has a -Force switch for Delete-CSObject

As often happens in development environments, data changes, configurations change and at some point you end up with a whole bunch of objects that are in no-mans land. This happened to me today. I had thousands of objects that we basically empty but had previously triggered to be exported to the MIM Service prior to them actually being deleted from the source management agent.

An example of one of the objects. A group with a Pending Export to the MIM Service.

A closer look at the object and there is no attribute data present as the source object had been removed.

And only a single connector, to the MIM Service which it will never reach as it doesn’t contain the mandatory attributes.

Normally to clean up such a mess you’d probably be looking at deleting the Connector Space for the MIM Service and then refreshing it from the MIM Service and these objects would be gone. However, this development environment is rather large, and that wasn’t something I had time or was prepared for at this time. So here’s how I worked around the issue.

Deleting spurious objects from the Connector Space

There’s two approaches;

  1. Select each of the errors, select the MIM Service Connector and select delete. That would work but I had thousands.
  2. Automate the process described in point 1. That’s the approach I took

Using the ever versatile Lithnet MIM Sync Powershell Module I retrieved the last run details for my MIM Service MA. I grabbed all the errors, inspected the errors for the ones that were failing creation to the MIM Service and then deleted the CSObject for that orphan.

Here’s where it got more than a little *clink clink* cowboy-ish. The Delete-CSObject cmdlet requires confirmation to delete the CSObject. There is not a switch to force the delete, or accept confirmation globally*. I wasn’t going to click Yes or press Enter 5000 times either.

So I wrote a small script that loops and checks for the Confirm disconnection dialog and sends the enter key to window.

Here’s the two little scripts.

This first script retrieves the last run details and loops through the errors.

This second script which I ran in a second separate PowerShell Runspace loops around and presses enter at the right time.

*I’ve submitted an enhancement request to Ryan to add a confirm parameter to Delete-CSObject