Synchronizing Exchange Online/Office 365 User Profile Photos with FIM/MIM

Introduction

This is Part Two in the two-part blog post on managing users profile photos with Microsoft FIM/MIM. Part one here detailed managing users Azure AD/Active Directory profile photo. This post delves deeper into photos, specifically around Office 365 and the reason why you may want to manage these via FIM/MIM.

Background

User profile photos should be simple to manage. But in a rapidly moving hybrid cloud world it can be a lot more complex than it needs to be. The best summary I’ve found of this evolving moving target is from Paul Ryan here.

Using Paul’s sound advice we too are advising our customers to let users manage their profile photo (within corporate guidelines) via Exchange Online. However as described in this article photos managed in OnPremise Active Directory are synchronized to Azure AD and on to other Office365 services only once. And of course we want them to be consistent across AD DS, Azure AD, Exchange Online and all other Office365 Services.

This post details synchronizing user profile photos from Exchange Online to MIM for further synchronization to other systems. The approach uses a combination of Azure GraphAPI and Exchange Remote PowerShell to manage Exchange Online User Profile Photos.

The following graphic depicts the what the end goal is;

Current State

  • Users historically had a photo in Active Directory. DirSync/ADSync/AzureADConnect then synchronized that to Azure AD (and once only into Office 365).
  • Users update their photo in Office365 (via Exchange Online and Outlook Web Access)
    • the photo is synchronized across Office365 Services

Desired State

  • An extension of the Current State is the requirement to be able to take the image uploaded by users in Exchange Online, and synchronize it back to the OnPremise AD, and any other relevant services that leverage a profile photo
  • Have AzureADConnect keep AzureAD consistent with the new photo obtained from Office365 that is synchronized to the OnPrem Active Directory
  • Sync the current photo to the MIM Portal

Synchronizing Office365 Profile Photos

Whilst Part-one dealt with the AzureAD side of profile photos as an extension to an existing AzureAD PowerShell Management Agent for FIM/MIM, I’ve separated out the Office365 side to streamline it and make it as efficient as possible. More on that later. As such I’ve created a new PowerShell Management Agent specifically for Office365 User Profile Photos.

I’m storing the Exchange Online photo in the MIM Metaverse as a binary object just as I did for the AzureAD photo (but in a different attribute ). I’m also storing a checksum of the photos (as I did for the AzureAD Photo, but also in a different attribute) to make it easier for comparing what is in Azure AD and Exchange Online, to then be used to determine if changes have been made (eg. user updated their profile photo).

Photo Checksum

For generating the hash of the profile photos I’m using Get-Hash from the Powershell Community Extensions.  Whilst PowerShell has Get-FileHash I don’t want to write the profile photos out to disk and read them back in just to get the checksum. That slows the process up by 25%. You can get the checksum using a number of different methods and algorithms. Just be consistent and use the same method across both profile photos and you’ll be comparing apples with apples and the comparison logic will work.

Some notes on Photos and Exchange Online (and MFA)

This is where things went off on a number of tangents. Initially I tried accessing the photos using Exchange Online Remote PowerShell.

CAVEAT 1: If your Office365 Tenant is enabled for Multi-Factor Authentication (which it should be) you will need to get the Exchange Online Remote PowerShell Module as detailed here. Chances are you won’t have full Office365 Admin access though, so as long as the account you will be using is in the Recipient Management Role you should be able to go to the Exchange Control Panel using a URL like https://outlook.office365.com/ecp/?realm=<tenantname>&wa=wsignin1.0 where tenantname is something like customer.com.au From the Hybrid menu on in the right handside pane you will then be able to download the Microsoft.Online.CSE.PSModule.Client.application I had to use Internet Explorer to download the file and get it installed successfully. Once installed I used a few lines from this script here to load the Function and start my RPS session from within PowerShell ISE during solution development.

CAVEAT 2: The EXO RPS MFA PS Function doesn’t allow you to pass it your account password. You can pass it the identity you want to use, but not the password. That makes scheduled process automation with it impossible.

CAVEAT 3: The RPS session exposes the Get-UserPhoto cmdlet which is great. But the RPS session leverages the GraphAPI. The RPS PS Module doesn’t refresh it’s tokens, so if the import takes longer than 60 minutes then using this method you’re a bit stuffed.

CAVEAT 4: Using the Get-UserPhoto cmdlet detailed above, the syncing of photos is slow. As in I was only getting ~4 profile photos per minute slow. This also goes back to the token refresh issue as for pretty much any environment of the size I deal with, this is too slow and will timeout.

CAVEAT 5: You can whitelist the IP Address (or subnet) of your host so MFA is not required using Contextual IP Addressing Whitelisting. At that point there isn’t really a need to use the MFA Enabled PREVIEW EXO RPS function anyway. That said I still needed to whitelist my MIM Sync Server(s) from MFA to allow integration into the Graph API. I configured just the single host. The whitelist takes CIDR format so that looks like /32 (eg. 11.2.33.4/32)

Performance Considerations

As I mentioned above,

  • using the Get-UserPhoto cmdlet was slow. ~4 per minute slow
  • using the GraphAPI into Exchange Online and looking at each user and determining if they had a photo then downloading it, was also slow. Slow because at this customer only ~50% of their users have a photo on their mailbox. As such I was only able to retrieve ~145 photos in 25 minutes. *Note: all timings listed above were during development and actually outputting the images to disk to verify functionality. 

Implemented Solution

After all my trial and error on this, here is my final approach and working solution;

  1. Use the Exchange Online Remote PowerShell (non-MFA version) to query and return a collection of all mailboxes with an image *Note, add an exception for your MIM Sync host to the white-listed hosts for MFA (if your Office365 Tenant is enabled for MFA) so the process can be automated
  2. Use the Graph API to obtain those photos
    • with this I was able to retrieve ~1100 profile photos in ~17* minutes (after ~2 minutes to query and get the list of mailboxes with a profile photo)

Pre-requisites

There’s a lot of info above, so let me summarize the pre-requisties;

  • The Granfeldt PowerShell MA
  • Whitelist your FIM/MIM Sync Server from MFA (if your Office 365 environment is enabled for MFA)
  • Add the account you will run the MA as, that will in turn connect to EXO via RPS to the Recipient Management Role
  • Create a WebApp for the PS MA to use to access users Profile Photos via the Graph API (fastest method)
  • Powershell Community Extensions to generate the image checksum

Creating the WebApp to access Office365 User Profile Photos

Go to your Azure Portal and select the Azure Active Directory Blade from the Resource Menu bar on the left. Then select App Registrations and from the Manage Section of the Azure Active Directory menu, and finally from the top of the main pane select “New Application Registration“.

Give it a name and select Web app/API as the type of app. Make the sign-in URL https://localhost and then select Create.

Record the ApplicationID that you see in the Registered App Essentials window. You’ll need this soon.

Now select All Settings => Required Permissions. Select Read all users basic profiles in addition to Sign in and read user profile. Select Save.

Under Required Permissions select Add and then select 1 Select an API, and select Office 365 Exchange Online then click Select.

Choose 2 Select Permissions and then select Read user profiles and Read all users’ basic profiles. Click Select.

Select Grant Permissions

From Settings select Keys, give your key a Description, choose a key lifetime and select Save. RECORD the key value. You’ll need this along with the WebApp ApplicationID/ClientID for the Import.ps1 script.

Using the information from your newly registered WebApp, we need to perform the first authentication (and authorization of the WebApp) to the Graph API. Taking your ApplicationID, Key (Client Secret) and the account you will use on on the Management Agent (and that you have assigned the Recipient Management Role in Exchange Online) and run the script detailed in this post here. It will authenticate you to your new WebApp via the GraphAPI after asking you to provide the account you will use on the MA and Authorizing the permissions you selected when registering the app. It will also create a refresh.token file which we will give to the MA to automate our connection. The Authorization dialog looks like this.

Creating the Management Agent

Now we can create our Management Agent using the Granfeldt PowerShell Management Agent. If you haven’t created one before checkout a post like this one, that further down the post shows the creation of a Granfeldt PSMA. Don’t forget to provide blank export.ps1 and password.ps1 files on the directory where you place the PSMA scripts.

PowerShell Management Agent Schema.ps1

PowerShell Management Agent Import.ps1

As detailed above the PSMA will leverage the WebApp to read users Exchange Profile Photos via the Graph API. The Import script also leverages Remote Powershell into Exchange Online (for reasons also detailed above). The account you run the Management Agent as will need to be added to the Recipient Management Role Group in order to use Remote PowerShell into Exchange Online and get the information required.

Take the Import.ps1 script below and update;

  • Update lines 11, 24 and 42 for the path to where you have put your PSMA. Mine is under the Extensions directory in a directory named EXOPhotos.
  • copy the refresh.token generated when authenticating and authorizing the WebApp earlier into the directory you specified in line 42 above.
  • Create a Debug directory under the directory you specified in lines 11,24 and 42 above so you can see what the MA is doing as you implement and debug it the first few times.
  • I’ve written the Import to use Paged Imports, so make sure you tick the Paged Imports checkbox on the configuration of the MA
  •  Update Lines 79 and 80 with your ApplicationID and Client Secret that you recorded when creating your WebApp

 

Running the Exchange User Profile Photos MA

Now that you have created the MA, you should have select the EXOUser ObjectClass and the attributes defined in the schema. You should also create the EXOPhoto (as Binary) and EXOPhotoChecksum (as String) attributes in the Metaverse on the person ObjectType (assuming you are using the built-in person ObjectType).

Configure your flow rules to flow the EXOPhoto and EXOPhotoChecksum on the MA to their respective attributes in the MV.

Create a Stage Only run profile and run it. If you have done everything correctly you will see photos come into the Connector Space.

Looking at the Connector Space, I can see EXOPhoto and EXOPhotoChecksum have been imported.

After performing a Synchronization to get the data from the Connector Space into the Metaverse it is time to test the image that lands in the Metaverse. That is quick and easy via PowerShell and the Lithnet MIIS Automation PowerShell Module.

$me = Get-MVObject -ObjectType person -Attribute accountName -Value "drobinson"
$me.Attributes.EXOPhoto.Values.ValueBinary
[System.Io.File]::WriteAllBytes("c:\temp\myOutlookphoto.jpg" ,$me.Attributes.EXOPhoto.Values.ValueBinary )

The file is output to the directory with the filename specified.

Opening the file reveals correctly my Profile Photo.

Summary

In Part one we got the AzureAD/Active Directory photo. In this post we got the Office365 photo.

Now that we have the images from Office365 we need to synchronize any update to photos to Active Directory (and in-turn via AADConnect to Azure AD). Keep in mind the image size limits for Active Directory and that we retrieved the largest photo available from Office365 when synchronizing the photo on. There are a number of PowerShell modules for photo manipulation that will allow you to resize accordingly.

 

 

 

Scripting the generation & creation of Microsoft Identity Manager Sets/Workflows/Sync & Management Policy Rules with the Lithnet Resource Management PowerShell Module

Introduction

Yes, that title is quite a mouthful. And this post is going to be quite long. But worth the read if you are having to create a number of rules in Microsoft/Forefront Identity Manager, or even more so the same rule in multiple environments (eg. Dev, Staging, Production).

My colleague David Minnelli introduced using the Lithnet RMA PowerShell Module and the Import-RMConfig cmdlet recently for bulk creation of MIM Sets and MPR’s. David has a lot of the background on Import-RMConfig and getting started with it. Give that a read for a more detailed background.

In this post I detail using Import-RMConfig to create a Set, Workflow, Synchronization Rule and Management Policy Rule to populate a Development AD Domain with Users from a Production AD Domain. This process is designed to run on a combined MIM Service/Sync Server. If your roles a separated (as they likely will be in a Production environment) you will need to run these scripts on the MIM Sync Server (so it can query the Management Agents, and you will need to add in a line to connect to the MIM Service (eg. Set-ResourceManagementClient ) at the beginning of the script.

In my environment I have two Active Directory Management Agents, each connected to an AD Forest as shown below.

On each of the AD MA’s I have a Constant Flow Attribute (named Source) configured to flow in a value representing the source AD Forest. I’m doing this in my environment as I have more than one production forest (hence the need for automation). You could simply use the Domain attribute for the Set criteria. That attribute is used in the Set later on. Mentioning it up front so it make sense.

Overview

The Import-RMConfig cmdlet uses XML and XOML files that contain the configuration required to create the Set, Workflow, Sync Rule and MPR in the FIM/MIM Service. The order that I approach the creation is, Sync Rule, Workflow, Set and finally the MPR.

Each of these objects as indicated above leverage an XML and/or XOML input file. I’ve simplified base templates and included them in the scripts.

The Sync Rule Script includes a prompt to choose a folder (you can create one through the GUI presented) to store the XML/XOML files to allow the Import-RMConfig to use them. Once generated you can simply reference the files with Import-RMConfig to replicate the creation in another environment.

Creating the Synchronization Rule

For creation of the Sync Rule we need to define which Management Agent will be the target for our Sync Rule. In my script I’ve automated that too (as I have a number to do). I’m querying the MIM Sync Server for all its Active Directory MA’s and then providing a dialog to allow you to choose the target MA for the Sync Rule. That dialog simply looks like the one below.

Creating the Sync Rule will finally ask you to give the Rule a name. This name will then be used as the base Display Name for the Set, MPR and Workflow (and a truncated version as the Rule ID’s).

The script below in the $SyncRuleXML section defines the rules of the Sync Rule. Mine is an Outbound Sync Rule, with a base set of attributes and transforming the users UPN and DN (for the differing Development AD namespace). Update lines 42 and 45 for the users UPN and DN your namespace.

Creating the Workflow

The Workflow script is pretty self-explanatory. A simple Action based workflow and is below.

Creating the Set

The Set is the group of objects that will be synchronized to the target management agent. As my Sync Rule is only for Users my Set is also only contains users. As stated in the Overview I have an attribute that defines the authoritative source for the objects. I’m also using that in my Set criteria.

Creating the Management Policy Rule

The MPR ties everything together. Here’s that part of the script.

Tying them all together

Here is the end to end automation, and the raw script that you could use as the basis for automating similar rule generation. The Sync Rule could easily be updated for Contacts or Groups. Remember the attributes and object classes are case sensitive’.

  • Through the Browse for Folder dialog I created a new folder named ProvisionDevAD

  • I provided a Display Name for the rules

  • I chose the target Management Agent

  • The SyncRule, Workflow, Set and MPR are created. The whole thing takes seconds.

  • Script Complete

Let’s take a look at the completed objects through the MIM Portal.

Sync Rule

The Sync Rule is present as we named it. Including the !__ prefix so it appears at the top of the list.

Outbound Sync Rule based on a MPR, Set and Workflow

The Resources will be created and if deleted de-provisioned.

And our base attribute flows.

Set

Our Set was created.

Our naming aligns with what we input

And a Criteria based Set. As per the Overview I have an attribute populated by a Constant flow rule that I based my set on. You’ll want to update for you environment.

Workflow

The Action Workflow was created

All looks great

And it applies our Sync Rule

MPR

And finally our MPR. Created as a Transition In MPR with Action Workflow

Set Transition and naming all aligned

The Transition Set configured for the Set that was created

And the Workflow configured with the Workflow that was just created

Summary

When you have a lot of Sync Rules to create, or you know you will need to re-create them numerous times, potentially in different environments automation is key. This just scratches the surface on what can be achieved, and made so much easier using the Lithnet PowerShell Modules.

Here’s is the full script. Note: You’ll need to make a couple of minor changes as indicated earlier, but you should be able to create a Provisioning Rule end to end pretty quick to validate the process. Then customize accordingly for your environment and requirements. Enjoy.

Diagnosing FIM/MIM ‘kerberos-no-logon-server’ error on an Active Directory Management Agent

Overview

I have a complex customer environment where Microsoft Identity Manager is managing identities across three Active Directory Forests. The Forests all serve different purposes and are contained in different network zones. Accordingly there are firewalls between the zone where the MIM Sync Server is located and two of the other AD Forests as shown in the graphic below.

As part of the project the maintainers of the network infrastructure had implemented rules to allow the MIM Sync server to connect to the other two AD Forests. I had successfully been able to create the Active Directory Management Agents for each of the Forests and perform synchronization imports.

The Error ‘kerberos-no-logon-server’

Everything was going well right up to the point I went to export changes to the two AD Forests that were separated by firewalls. I received the ‘kerberos-no-logon-server’ error as shown below from the run profile output.

I started investigating the error as I hadn’t encountered this one before. There were a few posts on the possibilities mainly dealing with properties of the AD MA’s configuration. But I did stumble on a mention of kerberos being used when provisioning users to Active Directory and setting the initial password. That aligned with what I was doing. I had provided the networking engineers with my firewall port requirements. Those are (no PCNS required for this implementation) ;

  • 389 TCP – LDAP
  • 636 TCP – LDAPS
  • 88 TCP – Kerberos
  • 464 TCP/UDP – Kerberos
  • 53 TCP – DNS
  • 3268 TCP/UDP – Global Catalog
  • 3269 TCP/UDP – Global Catalog
  • 135 TCP – RPC

My old school immediate thought was to Telnet to each of the ports to see if the firewall was allowing me through. But with a couple of forests to test against and UDP ports as well, it wasn’t going to be that easy. I found a nice little Test-Port function that did both TCP and UDP. I already had an older script for testing TCP ports via PowerShell. So I combined them.

Identifying the cause

As suspected connectivity to the forest where my MIM Sync Server was located was all good. The other two, not so much. GC connectivity wouldn’t give me the Kerberos error, but not having Kerberos Port 464 certainly would.

In the backwards and forwards with the networking team I had to test connectivity many times so I added a running output as well as a summary output. The running output highlighting ports that weren’t accessible.

Here’s the raw script if you’re in a similar situation. Get the Test-Port Function from the URL in line 1 to test UDP Port connectivity. Add additional ports to the arrays if required (eg. for PCNS), and update the forest names in lines 21-23.

Summary

I’m sure this is going to become more relevant in a Cloud/Hybrid world where MIM Servers will be in Azure, Active Directory Forests will be in different networks and separated by firewalls and Network Security Groups.

 

 

 

Joining Identities between Active Directory and Azure Active Directory using Microsoft Identity Manager

Introduction

One of the foundations of Identity Management is the ability to join an identity between disparate connected systems. As we extend our management of identities into cloud services this adds a few twists.

A key concept is to use an anchor that is persistent. Something that doesn’t change through a users life-cycle. A user’s Security IDentifier (SID) in Active Directory is perfect. It doesn’t change when a user or group may get renamed.  What gets interesting is how the SID is represented when returned using different methods. That is what I quickly cover in this post.

Overview

The defacto method for connecting your OnPremise Active Directory to Azure Active Directory is to use Azure Active Directory Connect. AADC will synchronise users and groups SID’s to the corresponding object in AAD into the onPremisesSecurityIdentifier attribute. 

When the onPremisesSecurityIdentifier  attribute is retrieved via the GraphAPI the format looks like this: S-1-5-21-3878594291-2115959936-132693609-65242

Using an Active Directory Management Agent for FIM/MIM and synchronizing the objectSID from the OnPremise AD represents the value in the Metaverse in binary format which when viewed as text looks like this:  15000005210002431664623112825230126105190232781820

Translating SID formats so we can join identities

What we need to do is translate the string representation of the SID returned from the GraphAPI and AzureAD so that we have it in a binary format. Then we can then use those attributes in join rules to match users/groups between AzureAD and our OnPremise Active Directory.

Overview-1

 

In my environments I’m using the out of the box FIM/MIM Active Directory Management Agent. For Azure AD/Office 365 I’m using the Granfeldt PowerShell Management Agent to integrate with Azure AD via the GraphAPI.

On my AzureAD PowerShell Management Agent I have an attribute named AADonPremiseSID configured with the format as Binary in my PSMA Schema.ps1 as shown below.

$obj | Add-Member -Type NoteProperty -Name "AADonPremiseSID|Binary" -Value 0x10

On my Azure AD PSMA I have the following lines in my Import.ps1 which essentially takes the value retrieved from the GraphAPI S-1-5-21-3878594291-2115959936-132693609-65242 and converts it to a binary array that in text looks something like 15000005210002431664623112825230126105190232721825400 and stores it in the AADonPremiseSID binary attribute in the connector space.

# Create SID .NET object using SID string from AAD S-1-500-........ 
$sid = New-Object system.Security.Principal.SecurityIdentifier $user.onPremisesSecurityIdentifier
 
#Create a byte array for the length of the users SID
$BinarySid = new-object byte[]($sid.BinaryLength)

#Copy the binary SID into the byte array, starting at index 0
$sid.GetBinaryForm($BinarySid, 0)

#Add the SID to the user in the connector space
$obj.Add("AADonPremiseSID",$BinarySid)

This then lets me join my users (and groups using the same method) between AD and AAD.  Essentially a line to put it into Security Identifier format, two lines to convert it to a binary array and a line to store it in the connector space. Simple when you don’t over think it.

I’m posting this because I know I’m going to need to do this often. Hope it helps someone else too.

How to create a PowerShell FIM/MIM Management Agent for AzureAD Groups using Differential Sync and Paged Imports

Introduction

I’ve been working on a project where I must have visibility of a large number of Azure AD Groups into Microsoft Identity Manager.

In order to make this efficient I need to use the Differential Query function of the AzureAD Graph API. I’ve detailed that before in this post How to create an AzureAD Microsoft Identity Manager Management Agent using the MS GraphAPI and Differential Queries. Due to the number of groups and the number of members in the Azure AD Groups I needed to implement Paged Imports on my favourite PowerShell Management Agent (Granfeldt PowerShell MA). I’ve previously detailed that before too here How to configure Paged Imports on the Granfeldt FIM/MIM PowerShell Management Agent.

This post details using these concepts together specifically for AzureAD Groups.

Pre-Requisites

Read the two posts linked to above. They will detail Differential Queries and Paged Imports. My solution also utilises another of my favourite PowerShell Modules. The Lithnet MIIS Automation PowerShell Module. Download and install that on the MIM Sync Server where you be creating the MA.

Configuration

Now that you’re up to speed, all you need to do is create your Granfeldt PowerShell Management Agent. That’s also covered in the post linked above  How to create an AzureAD Microsoft Identity Manager Management Agent using the MS GraphAPI and Differential Queries.

What you need is the Schema and Import PowerShell Scripts. Here they are.

Schema.ps1

Two object classes on the MA as we need to have users that are members of the groups on the same MA as membership is a reference attribute. When you bring through the Groups into the MetaVerse and assuming you have an Azure AD Users MA using the same anchor attribute then you’ll get the reference link for the members and their full object details.

Import.ps1

Here is my PSMA Import.ps1 that performs what is described in the overview. Enumerate AzureAD for Groups, import the active ones along with group membership.

Summary

This is one solution for managing a large number of Azure AD Groups with large memberships via a PS MA with paged imports showing progress thanks to differential sync which then allows for subsequent quick delta-sync run profiles.

I’m sure this will help someone else. Enjoy.

Follow Darren on Twitter @darrenjrobinson